Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers

نویسندگان

  • Ben Minnaert
  • Nobby Stevens
چکیده

Wireless power transfer from one transmitter to multiple receivers through inductive coupling is slowly entering the market. However, for certain applications, capacitive wireless power transfer (CWPT) using electric coupling might be preferable. In this work, we determine closed-form expressions for a CWPT system with one transmitter and two receivers. We determine the optimal solution for two design requirements: (i) maximum power transfer, and (ii) maximum system efficiency. We derive the optimal loads and provide the analytical expressions for the efficiency and power. We show that the optimal load conductances for the maximum power configuration are always larger than for the maximum efficiency configuration. Furthermore, it is demonstrated that if the receivers are coupled, this can be compensated for by introducing susceptances that have the same value for both configurations. Finally, we numerically verify our results. We illustrate the similarities to the inductive wireless power transfer (IWPT) solution and find that the same, but dual, expressions apply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Energy Beamforming under Per-Antenna Power Constraint

Energy beamforming (EB) is a key technique to significantly enhance the efficiency of wireless power transfer (WPT). In this paper, we study optimal EB under per-antenna power constraint (PAC) which is more practical than conventional sum-power constraint (SPC) at multi antenna energy transmitter (ET). We consider a broadcast network, where one multi antenna ET with PAC, transfers wireless ener...

متن کامل

High Efficient Wireless Charger for Electric Vehicle with Reduced Sensitivity to Misalignment using Multilevel Inverter

Wireless power transfer (WPT) has been found to be a practical replacement for cable power transfer which provides a wide range of applications. This technology offers a remarkable solution for charging electric vehicles (EVs) due to more convenience and increased safety.  Moreover dynamic (in-motion) wireless charging offers the possibility of reducing the energy storage requirement on the veh...

متن کامل

Optimal Array Beamforming for Microwave Power Transmission in Complex Environment

Wireless Power Transfer(WPT) is a popular research field in recent years and can be categorized into three approaches: inductive coupling, laser beaming and microwave power transmission(MPT). MPT system operates at the microwave frequency and transfer the energy over more than a few wavelengths. It has its unique advantages of supplying power to nonaccessible and mobile receivers. The overall e...

متن کامل

Conjugate Image Theory Applied on Capacitive Wireless Power Transfer

Wireless power transfer using a magnetic field through inductive coupling is steadily entering the market in a broad range of applications. However, for certain applications, capacitive wireless power transfer using electric coupling might be preferable. In order to obtain a maximum power transfer efficiency, an optimal compensation network must be designed at the input and output ports of the ...

متن کامل

Wireless Energy Transfer to a Pair of Energy Receivers using Signal Strength Feedback

This paper focuses on wireless energy transfer (WET) to a pair of low complex energy receivers (ER), by only utilizing received signal strength indicator (RSSI) values that are fed back from the ERs to the energy transmitter (ET). Selecting the beamformer that maximizes the total average energy transfer between the ET and the ERs, while satisfying a minimum harvested energy criterion at each ER...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017